Discrete Random Variables

- Finite number of values
- Displayed in histograms
- Mean/Expected Value: (Weighted Average): $\mu=\sum \mathrm{x} \cdot \mathrm{P}(\mathrm{x})$
- To be a valid Probability Distribution:
- $0 \leq \mathrm{P}(\mathrm{x}) \leq 1$
- $\quad \sum \mathrm{P}(\mathrm{x})=1$

GPS/CCSS: MM3D1

Binomial Distribution

1) categorical variables
2) "Success" depends on how we "define" the random variable
3) $p=$ probability of success
4) $(1-p)=$ probability of failure
5) Assumes independent trials (p stays constant)
6) $\mu=n p=$ mean
7) $=\sqrt{n p(1 \quad p)}=$ s.d.
8) easily calculated probabilities
9) $P(X=x)=\binom{n}{x} p^{x}\left(\begin{array}{ll}1 & p)^{n x}=\left(\frac{n!}{x!(n} x\right)!\end{array}\right) p^{x}\left(\begin{array}{ll}1 & p\end{array}\right)^{n x}$
10) can be approximated well by the normal distribution when \# of failure and success is at least 15
11) "Success" does not always mean something "positive" or "good"
12) Each trial has two outcomes
13) Fixed number of trials, n.

GPS/CCSS: N/A

Geometric Distribution

- $\mathrm{X}=$ number of trials until the first success; discrete random variable
- $\quad P(X=x)=p(1 \quad p)^{x 1}$ where $\mathrm{x}=1,2, \ldots$ and $\mathrm{p}=$ prob. of a success
- $\mu=1 / \mathrm{p}$
- Special case of the negative binomial distribution.

GPS/CCSS: N/A

Normal Distribution (Continuous R. Variable)

- z-score probability
- Probability distribution \rightarrow symmetric, bell-shaped graph
- Mean and Standard deviation parameters
- Empirical Rule (Image from our textbook, p. 28o)

- Standard Normal Distribution $\boldsymbol{\rightarrow} \mu=0, \sigma=1$
- Cumulative Probability: (Image from textbook, p 282.)

- Continuous random variable has possible values that form an interval
- Probability is between o and 1.

Adding/Subtracting Two Independent Random Variables

- The sum of the means $=$ mean of total ${ }_{x \pm y}={ }_{x} \pm{ }_{y}$
- The square root of the sums of the squares of the standard deviations (of the parts) is the standard deviation of the total (or difference)

$$
\begin{aligned}
& \begin{array}{l}
2 \\
x+y
\end{array}=\begin{array}{l}
2 \\
x
\end{array}+\begin{array}{l}
2 \\
y \\
x y
\end{array}=\begin{array}{l}
2 \\
x
\end{array}+\begin{array}{l}
2 \\
x
\end{array}
\end{aligned}
$$

GPS/CCSS: MM3D1

Frequentist versus Bayesian Probability

FREQUENTIST

Long run relative frequency
Θ is fixed and unknown
Θ never gets assigned probability

BAYESIAN

Probability is evidence based - degree belief Θ must be given a distribution
Θ has probability but no agreement on dist.

GPS/CCSS: N/A

Confidence Interval for a Proportion

Estimate \pm margin of error \rightarrow sample proportion $\pm \mathrm{z}$ (standard error of sample proportion)
Contains a range of plausible values for the population proportion at a specified confidence level
If using 95% confidence level, in repeated sampling, if we build an interval using the above procedure, we expect 95% of the intervals to capture the population proportion.

